The homology algebra of finite H-spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Loop Homology Algebra of Spheres and Projective Spaces

In [3] Chas and Sullivan defined an intersection product on the homology H∗(LM) of the space of smooth loops in a closed, oriented manifold M . In this paper we will use the homotopy theoretic realization of this product described by the first two authors in [2] to construct a second quadrant spectral sequence of algebras converging to the loop homology multiplicatively, when M is simply connec...

متن کامل

P-persistent homology of finite topological spaces

Let P be a finite partially ordered set, briefly a finite poset. We will show that for any P -persistent object X in the category of finite topological spaces, there is a P− weighted graph, whose clique complex has the same P -persistent homology as X.

متن کامل

Persistent Homology of Finite Topological Spaces

We introduce homology and finite topological spaces. From the basis of that introduction, persistent homology is applied to finite spaces. We prove an equivalence between persistent homology and normal homology in the context of finite topological spaces and introduce an extended pseudometric on finite topological spaces, using the results of Minian.

متن کامل

Incidence Homology of Finite Projective Spaces

Let F be the finite field of q elements and let P(n, q) be the projective space of dimension n−1 over F. We construct a family H k,i of combinatorial homology modules associated to P(n, q) over a coefficient field F field of characteristic p0 > 0 co-prime to q. As FGL(n, q) -representations the modules are obtained from the permutation action of GL(n, q) on the subspaces of F. We prove a branch...

متن کامل

Vector Spaces II : Finite Dimensional Linear Algebra

Example 3. If X ⊆ RN is a vector space then it is a vector subspace of RN . Example 4. R1 is a vector subspace of R2. But the set [−1, 1] is not a vector subspace because it is not closed under either vector addition or scalar multiplication (for example, 1 + 1 = 2 6∈ [−1, 1]). Geometrically, a vector space in RN looks like a line, plane, or higher dimensional analog thereof, through the origin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1986

ISSN: 0022-4049

DOI: 10.1016/0022-4049(86)90110-6